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Abstract

We construct a class of numerical schemes for the Liouville equation of geometric optics coupled with the Geometric
Theory of Diffractions to simulate the high frequency linear waves with a discontinuous index of refraction. In this work
[S. Jin, X. Wen, A Hamiltonian-preserving scheme for the Liouville equation of geometric optics with partial transmissions
and reflections, SIAM J. Numer. Anal. 44 (2006) 1801-1828], a Hamiltonian-preserving scheme for the Liouville equation
was constructed to capture partial transmissions and reflections at the interfaces. This scheme is extended by incorporating
diffraction terms derived from Geometric Theory of Diffraction into the numerical flux in order to capture diffraction at the
interface. We give such a scheme for curved interfaces. This scheme is proved to be positive under a suitable time step con-
straint. Numerical experiments show that it can capture diffraction phenomena without fully resolving the wave length of
the original wave equation.
© 2008 Elsevier Inc. All rights reserved.

Keywords: High frequency waves; Liouville equation; Geometrical theory of diffraction; Geometric optics; Creeping wave; Numerical
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1. Introduction

In this paper, we construct a numerical scheme for the high frequency wave equation in two-dimension:
Uy —c(x)’Au=0, >0, x€QCR, (1.1)
u(0) = A(x,0)e?*0/, (1.2)
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%ﬂ@zB@ﬁWWWG (1.3)

with suitable boundary conditions on 0Q. Here ¢(x) is the local wave speed, and € < 1 is a parameter mea-
suring the ratio of the wave length over the domain. In this problem, the relative wave length e is very small,
or the essential frequencies of the wave, which are of O(1/¢), are high. A direct simulation of the problem is
prohibitively costly, thus approximate models for wave propagation based on geometric optics (GO) are usu-
ally used [13,16].

We are concerned with the case when ¢(x) contains discontinuities due to different media. Note n(x) = %,
for ¢y a reference wave speed, is the index of refraction which is different in different media. This discontinuity
will generate an interface, and as a consequence waves crossing this interface will undergo transmissions,
reflections and diffractions.

One of the approximate models for high frequency wave equation is the Liouville equation, which arises in
phase space description of geometric optics (GO) [13]:

fi+H - Vyf —Hy-Vif =0, t>0, x,keR (1.4)

where f(z, x, k) is the energy density distribution of waves depending on position x, time ¢ and slowness vector
k, while the Hamiltonian H possesses the form

H(x,K) = c(x)K| = c(x)\/&} + K3+ - + & (1.5)
The bicharacteristics of this Liouville equation (1.4) satisfies the Hamiltonian systems:

dx k dk

— = — — = —¢ k. 1.6

3= o) g = el (16)

In classical mechanics the Hamiltonian (1.5) of a particle remains a constant along particle trajectory, when it
is being transmitted and reflected by the interface.

Recently several phase space based level set methods for high frequency waves, in particular the multi-
valued solutions in GO are based on this equation, see [6,14,17,18,22,23,27,37]. Semiclassical limit of wave
equation with transmissions and reflections at the interface were studied in [1,32,39]. A Liouville equation
based level set method for the wave front, but with only reflection, was introduced in [9]. See also a higher
order method for multiple reflection [10].

In [26], a class of Hamiltonian-preserving numerical schemes for the Liouville equation (1.4) with partial
transmissions and reflections was constructed. The design principle there was to build the behavior of the wave
at the interface—either cross over with a changed velocity (or momentum) according to a constant Hamilto-
nian or be reflected with a negative velocity—into the numerical flux. See also earlier works [24,25]. These
schemes are called Hamiltonian-preserving schemes, since they use a constant Hamiltonian to determine par-
ticle velocity on one side of the interface from the other side in the case of transmission. It gives a criterion for
a unique solution to the governing Liouville equation (1.4), which is linearly hyperbolic with singular (discon-
tinuous or measure-valued) coefficients. For a plane wave hitting an interface, it selects the solution that
describes the interface condition in GO governed by Snell’s Law of refraction when the interface width is much
shorter than the wave length, namely a sharp interface.

Previously many numerical methods have been introduced to compute effectively wave propagations through
heterogeneous media, including acoustic waves and elastic waves, see [31,45] and references therein. The Ham-
iltonian-preserving scheme bears some similarity with the immersed interface method [45], in that the interface
condition is built into the numerical flux. Unlike these earlier works, which were most effective for low frequency
waves, the Hamiltonian-preserving scheme is advantageous for high frequency waves. Using the high frequency
limit—the Liouville equation—our numerical methods do not need to fully resolve the short wave length.

The derivation of GO does not take into account the effects of geometry and boundary conditions, which
give rise to GO solutions that are discontinuous. Diffractions are lost in the infinite frequency approximation
such as the Liouville equation. In this case, correction terms can be derived, as done in Geometric Theory of
Diffraction (GTD) by Keller in [28]. GTD provides a systematic technique for adding diffraction effect to the
GO approximations.
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The aim of this paper is to construct a numerical scheme that accounts for transmission, reflection and dif-
fraction, when computable transmission, reflection, and diffraction coefficients are available. The idea is to
modify the numerical flux of [26] to include terms responsible for diffractions. These new terms incorporate
GTD theory, including diffraction coefficients and decay rates of the surface waves. In this direction, we men-
tion recent numerical methods for creeping waves [35,36,43]. To our knowledge, our method is the first Eule-
rian method for diffraction at interfaces that takes into consideration of partial transmissions, reflections and
diffractions. We develop such a scheme for curved interfaces. Other geometries will be studied in our future
works.

This paper is organized as follows: the GO approximations by the Wigner transform and by the WKB
expansion for wave equation are presented in Section 2. In Section 3, we illustrate the behavior of waves at
curved interfaces. We give detailed descriptions of GTD for two types of curved interfaces. In Section 4, inter-
face conditions for (1.4) that incorporate transmission, reflection and diffraction coefficients are introduced.
We then build these new interface conditions into the numerical fluxes and describe the numerical method
in Section 5. Numerical examples are given in Section 6 to verify the accuracy of the scheme against the full
simulation based on the wave equation (1.1)—(1.3). Finally, we make some concluding remarks in Section 7.
The detailed algorithms are documented in the Appendix.

2. Geometric optics approximation of the wave equation in the phase space

Consider the two-dimensional wave equation
Uy —c(x)’Au=0, XxcR’ t€R, (2.1)
Ul_g =, |, =51 2.2)
Introduce the new dependent variables
s=u, r=Vu

to obtain the system

% —Vs =0, (23)
C(i) & — divr = 0. :
The energy density is given by
1
E(x,1) = P — |u* +5 71V Vul’. (2.4)
Let w= (aax“ a0 Then system (2.3) can be put in the form of a symmetric hyperbolic system

(
)
Z o (2.5)

with initial data
w(0,x) = wp(x).

The matrix 4(x) = diag(1, o —L), where each of the matrices D; is constant and symmetric with entries either
0or —1.

To study the GO limit of solution of (2.5), we assume that the coefficients of the matrix 4(x) vary on a scale
much longer than the scale on which the initial data vary. Let € be the ratio of these two scales. Rescaling space
and time coordinates (x,) by X — €x,¢ — ef, one obtains

ow*
A(x) 3

w‘(O,x):w()e) or woe,x>. (2.7)

ow*

—0, (2.6)
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Note that the parameter ¢ does not appear explicitly in (2.6). It enters through the initial data (2.7). We are
interested in the initial data of the standard GO form

w(0,X) = Ao(x)e'0/e, (2.8)
Following [38], one can study the GO limit of (2.6) by using the Wigner distribution matrix W<:
2
We(t,x,K) = <2L> / e YW (1, X — ey/2)w (X + ey/2)'dy, (29)
[

where W' is the conjugate transpose of w. Although W* is not positive definite, it becomes so as € = 0.
The energy density for (2.6) is given by

E(t,x) Zé(A(X)WF(l, X), W (t,x)) = % /Tr(A(x) we(t, x,k))dk. (2.10)

Let
ling we(t,x, k) = WO, x, k).

As e — 0, the high frequency limit of £°(¢,x) is

E0(t,x) :% / Tr(A(x) W (z,x,k))dk = / at(t,x,k)dk, (2.11)
where the amplitude a* (¢, x, k) is given by
1 .
ai(tv Xvk) - (2 )2 / dyelk‘yfﬂ:(t7x7x - y/27k)4fj:(t7 X, X + y/27k) (212)
T
with
1 . V2 Ou
k)=1/=z K)E—— — 2.1
fi(t7X7Z7 ) \/;(Vu(t,z) ) 2|C(X)| ot (t’ Z) ( 3)
and k = k/|k| = (cos 6, sin §)". This shows that
at(t,x,k) = a (¢,x,—K) (2.14)
and therefore one needs only to keep track of a* (¢, x, k). It satisfies the Liouville equation [38]
+ A~
% + ek - Viat — [k|Vye(x) - Via™ = 0. (2.15)

Therefore, at can be interpreted as the phase space energy density distribution. It solves the Liouville equa-
tions (1.4) and (1.5), with the zeroth moment giving the spatial energy density Sw)(t, x) as in (2.11).

Next we mention the connection with the usual WKB approximation. We look for a solution of (2.6) with
the initial data

w(0,x) = wy(x)eSo®)/<, (2.16)
in the form

w(t,X) = (Ao(t,X) + €d - - -)eS/e (2.17)
with 4y = (ro,s0). The leading order in € gives the eiconal equation for the phase S

c(leS’z —(VS)* =0. (2.18)

The next term O(€) yields the transport equation satisfied by the amplitude A(x, ?),

o ) vSs\
AP+ <A| |c(x)|m> —0. (2.19)
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It can be rewritten in conservative form
0
5 AP + V- (JAViH (x, VS)) = 0. (2.20)

The eiconal and transport equations (2.18) and (2.19) can also be derived from (2.15) as follows. In the GO
limit, initial data of form (2.16) implies that

at(0,x,k) = |Ay(x)[*5(k — VSo(x)). (2.21)

Let the functions S(z,x) and |.A(z, x)|* be the solutions of the eiconal and transport equations (2.18) and (2.19),
respectively, with initial conditions S(0,x) = Sy(x) and .A(0,x) = Ay(x). Then the solution of the Liouville
equation (2.15) is

at(t,x,k) = |A(t,x)[*(k — VS(t,x)). (2.22)

Conversely, given initial conditions of the form (2.21) for (2.15) and a™ by (2.22), S and A must satisfy the
eiconal and transport equations respectively by taking the zeroth and first moments of the Liouville equation
(2.15). This shows that one can recover the WKB approximation from the Liouville equation. However, the
WKB approximation breaks down at caustics, where the velocity VS is discontinuous and the amplitude |4] is
unbounded. Beyond the caustics, a computation based on the eiconal equation and the transport equation
picks up the so-called viscosity solution [12], while the physical GO solution to the eiconal and transport equa-
tions becomes multi-valued [20,42].

The GO approximation is good when e is very small. For moderately small ¢, diffraction cannot be ignored.
Clearly, the Liouville equation (2.15), valid at ¢ = 0, contains no information about transmission and reflec-
tion—which occur even for € = 0, nor any information about diffraction which occurs for ¢ > 0. It is not valid
at the interface.

In the next section, we will discuss the behavior of waves at curved interfaces.

3. The behavior of waves at an interface
3.1. Transmission and reflection

In GO, when a wave propagates with its energy density governed by the Liouville equation (1.4), its Ham-
iltonian H = c|k| should be preserved across the interface:

H(c" k) = H(c, k) = H(c k), (3.1)

where the superscripts “+” indicate the one-sided limits of wave speed at the interface, and k;, k, and k; denote
the velocities of incident waves, reflected waves and transmitted waves, respectively. The wave can be partly
reflected and partly transmitted. The condition (3.1) can be used to determine the particle velocity on one side
of the interface from its value on the other side. When a plane wave hits an interface, this condition is equiv-
alent to Snell’s Law of refraction [24]

sin0; sin0,

(3.2)

c” ct
(for a wave hits the interface from the left) and the reflection law
HV = 6,‘, (33)

where 0;, 0, and 6, stand for angles of incident, transmitted and reflected waves. The reflection coefficient is
given by (see for example [1,32,39]),

j: 2
R (c cos 0; — cT cos 0,)
)

- 3.4
% ¢t cos b, + ¢ cos 0, (3.4)

while the transmission coefficient is o} = 1 — of. Here X, o are for the right moving wave while o®, « are for
the left moving waves.
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3.2. Diffraction

Assume ¢™ > ¢~. When a wave hits the interface from the slow medium, there is a critical angle 0. at which
the refracted wave is parallel to the interface, namely,

sin 0, = Z_+ (3.5)

This critically refracted wave is a surface wave in the fast medium [3,29]. Consequently, it sheds refracted wave
back into the slow medium. These shed waves are diffracted waves, which leave the interface at the critical
angle at every point. Because the shed waves will carry energy, the surface waves will decay exponentially with
the factor f8, which is called the attenuation constant. The diffraction coefficient and the attenuation constant
only depend on the local geometry, the relative wave length € and the boundary conditions [30,33,40].

The behavior of the surface wave depends on the local curvature of the interface [7,8]. The local properties
of the interface can be classified into two types:

e Type A interface: an interface convex towards the fast medium.
e Type B interface: an interface convex towards the slow medium.

Below we will only consider the case of ¢t > ¢~. The other case can be obtained by interchanging the Type
A interface with the Type B interface.

3.2.1. The Type A interface
For a Type A interface, a diffracted wave can be produced by the following two ways (see Fig. 1):

(I) An incident wave on the fast medium hits the interface rangentially (like GF). In this case, the incident
wave will produce a surface wave along the fast side of the interface, which is called a “creeping wave”.
The creeping wave moves along the interface, continuously sheds tangentially diffracted waves into the
fast medium (like BP¢) and critically transmitted waves into the slow medium (like EPs).

(IT) An incident wave on the slow medium hits the interface at a critical angle of incidence (like QB). The
critically incident wave will produce a critically reflected wave back to the slow medium like BP3, and a
creeping wave on the fast side of the interface, along BCD, which sheds tangentially diffracted waves into
the fast medium, like BPg, and critically diffracted waves at the critical angle into the slow medium, like
EPs.

Let €, denote the relative wavelength in the fast medium. In case I, since the shed waves will carry energy,
the waves will decay exponentially. The attenuation constants is [34],

transmitted

tangentially
diffracted

tangentially 6

incident

tangentially
diffracted

Ps

critically

diffracted
p, P4

B ’ totally

ol e

Fig. 1. Wave reflection, transmission and diffraction at a Type A interface.
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V3 1\ . s P+ 1/a
ﬁAITqO(Z> (p" +1/a) W (3.6)

with g, ~ 2.33811 being the smallest positive zero of the Airy function which is given by

1 [~ 1
Ai<_x>:E/o cos (ET —xr)dr

N =c/ct, p* = |V (x)]/|c*(x)] is the curvature of the diffracted rays at the diffracted point [30], @ is the
radius of curvature of the interface at the diffracted point.

In the vicinity of the interface, there exist boundary layers [5]. A boundary layer of thickness O(ei/ 3) isa
narrow zone through which the waves undergo rapid variations. The diffraction coefficients outside the bound-
ary layer is

p @ 121, 4+ 1/6 N?
o =gl £ 1/l 1)) S

1
where r is the distance from the diffracted point, Ai/(—q) = 0 is the derivative of the Airy function and the
prime denotes the differentiation with respect to the argument of the Airy function. The diffraction coefficient
afb in the boundary layer is given by [34]

1
o T LA=62(0" 4 1/0)! 1 + i)
b — < .
a2 [ Ai'(=qo)I’[1/N? = 1]

Since the GO limit is not valid at the boundary layer, we cannot directly use o2 o A reasonable choice of oP 4 18
to match the diffraction coefficients o2 10 and oP, 0 which means to find r such that:

(3.7)

(3.8)

“AT—“AI

Namely, we should find the smallest positive solution ¢ of the following equation:

: - in — - 26 e
sV AI(—e. P2 P (pF 4 1/a)' s + qoe™)| = 7 P (pt + 1/a) (m) ) (3.9)
Then the matched new diffraction coefficient is given by
b mP(pt 4 1/a) RS 1
%4y = 5/6 12 7 2 2 : (3.10)
277, [AT'(—=gqo)]"[1/N" = 1]

In case II, due to the diffracted waves, the creeping wave decays exponentially along the interface. (We remark
that, if the interface is flat, the diffracted field is present only on the slow side, where it is called a “lateral
wave” or “head wave”. The corresponding wave then decays algebraically in distance s like s~3/2.) Let e_ de-
note the wavelength in the slow medium, and the wavelength in fast medium is defined by ¢ = ;‘—fc,.

For tangentially diffracted wave, the attenuation constant is

b= =S a(5) o+ - LD, (3.11)

For the tangentially diffracted waves outside the boundary layer in the fast medium, the diffraction coefficient is
given by [8]

1 1 21—-1/4
D _ T (€4)3 L 1 N[l —N7]
00 = p+ 1/ a)y] 2 ((p" + 1/a)e, ) — .
= () 1+ 1 e e T
While the diffraction coefficient och in the boundary layer is
. Lo
o AL (26, fa)te i)
% = NG 2 7
[AT(=g0)]"[1 = N7

(3.12)




S. Jin, D. Yin/Journal of Computational Physics 227 (2008) 6106-6139 6113

The matched diffraction coefficient is given by

N[l =N
(AT (=g)I"[1 = N?]

oN—

(3.13)

ro

b _ T (& : + “S((t

% =55\ [(p" + 1/a)ro] 2((p™ + 1/a)e.)
with ry being the smallest positive r such that

,(r) = (1)

For the critically diffracted wave in the slow medium, the diffraction coefficient outside the boundary layer is
given by

Ay =2(7) v e
3 r
while in the boundary layer, the diffraction coefficient is
p _ Aillr/e ) 2e[aye )
Z Ai(0)
Then the matched diffracted coefficient is

Slw

e \ 2
c‘)ch)3 =2 <—> N(l _Nz)—1/27 (3.14)

ro
with 7y is the smallest positive number satisfies
D D
o2(r) = ().

Notice that for a flat interface, if ¢(x) = C) and ¢(x) = C», with Cy, C, constants on the two sides of the inter-
face, respectively, then p = 0,a~! = 0, so the diffraction coefficient vanishes. In this situation the diffraction
term is not of order €'/3, but of order ¢, which is called “lateral wave” [3] and will be discussed in another paper.

3.2.2. Type B interfaces
For a Type B interface a diffracted wave can be produced by an incident wave in the following two ways
(see Fig 2):

(I) When an incident wave on the slow medium hits the interface at the critical angle of incidence (like OB).
It will produce a reflected wave (like BP,), and a surface wave that travels along the fast side of the inter-
face (like BCD), and continually sheds critical diffracted waves (DPy) into the slow medium.

transmitted Py R
tangentially
diffracted

creeping

tangentially incident

P,
critically
diffracted

B
P " g tostall
0 reflected  Critically reflected reﬂe(}:lte d

Fig. 2. Wave reflection, transmission and diffraction at a Type B interface.
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(IT) When an incident wave on the slow side hits the interface tangentially (like OF). A surface wave will
propagate along the slow side of the interface (like EF), and continually sheds tangentially diffracted
waves into the slow medium (like FPs).

In case I, the attenuation constant of the critically diffracted wave in the slow medium is

V3

_ _ ; “+1/a
o, = 5 a0(2e ) o 10 -2

V1 —N?

The matched diffraction coeflicient in this case is

(3.15)

1/2
P —2%<E> : (1- NN (3.16)
By ¥o 9 .

where ry is the smallest positive solution of the following equation:

j(eemy2 1y |Ail(r/e) (26 fa) Pe |
A(EE) TNy N = A0 .

,
In case II, for the tangentially diffracted wave in the slow medium, the attenuation constant is

V3

_ _ “+1/a
b = S a0(2e ) B+ 10 - £ L

V1—N?’

the matched diffraction coefficient is given by

o (2me N (=NY'PAT(get)] (@ ) |Ailgeet)] 318
s, ('”0 ) {[(1_NZ)E_N2(1+N2)%]A{(%) (66) Ai'(gy) } G18)

with 7y is the smallest positive solution of the following equation:
(myz (1= N4 AT (o) _(LfW%WH: ea@ﬂﬁ
r [(1— N2 — N1+ N2)AQ (q,) \b6e-/ Ai'(qp) " \a

3.2.3. A summary on transmission, reflection and diffraction at a curved interface
We next discuss this behavior in more details when a plane incident wave hits a curved interface C (see

(3.17)

Ai

Fig. 3).
Firstly, we parameterize the interface in terms of arclength s in the form
x=x(s), y=y(s), sp<s5<ESe. (3.19)

We choose the arclength to increase with x (in a clockwise direction) and define the angle 0(s) to be the angle
between the positive x-axis and the normal of a point on the interface.
This definition implies that the local normal n(s) and tangent t(s) are given directly by

n(s) = (cos 6(s),sin 6(s)) (3.20)

and
t(s) = (—sin0(s),cos 0(s)), (3.21)
respectively. The radius of curvature a(s) is given by
1 1
M =W ey
Setting up a local coordinate system (n(s),t(s)) at the point of the interface, the original particle velocity

k = (&,7)" will become k' = (&,5)" in this new coordinate system with k' = Q(s)k where the rotation matrix
O(s) is given by

(3.22)
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i—1

j+1

Fig. 3. Two-dimensional interface with irregular points labeled as ‘H’ and ‘V’. The coordinates x’ and )’ are defined locally at the point P
on the interface.

_ < cosf(s) sinf(s) ) (3.23)

—sinf(s) cosB(s)

Then we can get the transmission and reflection o, o} for the incident wave hitting the interface in this local
coordinate system by the way introduced in the following for a vertical interface, with axis t(s) as the interface.
And for the corresponding velocity k" of the transmitted, reflected and diffracted waves, it can be obtained by
applying the Hamiltonian preserving principle for k' in the local coordinate system and then transforming
them back to the original system by multiplying O~ (s). The new velocity obtained in this way still have a con-
stant Hamiltonian in the original coordinate system because Q(s) is an orthogonal matrix and |k'| = [K|.

We next discuss this behavior in more details when a plane incident wave hits interface C with a constant
curvature. Again we will only discuss the case ¢™ > ¢™.

Let x = (x,),k = (&,5)". Firstly, assume the incident wave with a velocity k; = (&, #,)" hits the interface
from the left, slow medium. We will use the Hamiltonian-preserving conditions locally in the direction normal
to the interface as in [21].

In a local coordinate systems, (1.6) implies that #; is not changed i.e. n; = #;, when the wave crosses the
interface, k, = (&,,n,)" is the velocity of transmitted wave. We introduce

= (G @ | (&) -] (324

which measures the criticality of wave transmission, reflection or diffraction.
If & > 0, there are three possibilities:

e 7 > (. Note this condition always holds when the wave propagates from the fast to the slow medium. In thig

case the wave can be partially transmitted and partially reflected. With reflection coefficient «® = (%)
the wave is reflected with a new velocity (&,,5,)" = O~'(—&,n!)', where

[« - (4]
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with transmission coefficient o7 = 1 — o® it will be transmitted with a new velocity (&, n,)" = 0'(&, 1)),
where

&=V,
is obtained using (3.1).
e 7 < 0. In this case, there is no possibility for the wave to transmit, so the wave will be completely reflected
with velocity (&,,1,).
e 7 = (. This is the critical angle.
1. For a Type B interface, there is no possibility for the wave to transmit into the fast medium, instead
there is a partially reflected wave, and a surface wave along the surface of the fast medium, which decays

with rate e ¥, where z is the distance between the diffraction point and the incident point. The surface

wave continuously sheds critically diffracted waves back into the slow media with diffraction coefficient
D

% -
2. For a Type A interface, there is a partially reflected wave back to the slow medium, and a surface wave
along the surface of the fast medium, which decays with rate e *2*. The creeping wave sheds tangentially
diffracted waves into the fast medium with diffraction coefficient oc?z, and sheds critically diffracted waves

into the slow medium with diffraction coefficient o} .
If & =0, there are two other ways to generate diffracted waves:

e For a Type B interface, the incident wave will hit the interface tangentially and produce creeping waves
propagating along the interface. As such a creeping wave travels along the interface, it continually sheds
tangentially diffracted waves with diffraction coefficient ocBDz, and decays exponentially with a rate of e /5.

e For a Type A interface, the incident wave will hit the interface tangentially and produce creeping waves
propagating along the interface. Part of the incident wave will transmit to the slow medium with transmis-
sion coefficient 1 — ocADl. As such a creeping wave travels along the interface, it continually sheds tangentially
diffracted waves with diffraction coefficient ocffl, and decay exponentially with a rate f3, .

— A ATy, 2
If & <0, the behavior can be analyzed similarly with the reflection coefficient o® = (%) , the
transmission coefficient o = 1 — o®, and the suitable attenuation constants and diffraction coefficients.

4. Interface conditions that account for transmission, reflection and diffraction

Usually, the solution of the Liouville equation (1.4), which is linearly hyperbolic, can be solved by the
method of characteristics. When transmission and reflection both occur, f needs to be determined from two
bicharacteristics, one accounting for the transmission and the other for reflection. This is how a unique solu-
tion to such a linear hyperbolic PDE with discontinuous and measure-valued coefficients is determined [24,26].
In order to capture the diffraction phenomena, the reflection and transmission terms must be supplemented
with the diffraction term.

We will describe our method in the local coordinate system, and in the case of ¢t > ¢~. Let

-\2 -2
= (G @+ | (&) 1o (@)
4.1. The Type B interface

We first discuss the Type B interface. For & > 0, we use the following partial transmission and reflection
condition at the interface:

f(t7 X+, 6/77’/) = O‘if(% X_7 éiarl;) + OCEf(t, X+a _6/77’/)’ é; > 0 (42)

with 7, =" and & obtained from &/ through the constant condition (1.5).
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For & < 0, there are three possibilities:

1. if © > 0 (partial reflection and transmission), then

f(ta xia 5/7 7/]/) = a?f(h X77 _617 7/) + O{Ef<t> X+> f;a 7’];) (43)
2. if T < 0 (complete reflection), the interface condition is

fx7, &) =ft,x", =& n). (4.4)
3. if 7 =0 (case I), there will be some diffractions, so the interface condition is

f(e,x7(s), &) = o (X(S))/ g, (X(s,))e / ft—=14,x7(s4), &' (£,))dE, ds,

Sh
+ (1= ap (x(9)f (1, % (5), =&, 1), (4.5)

here I', is the line of critical angle

&, ¢ <c+<x<sq>>>2

— =sgn —=] -1 4.6

m, =~ N\t (40

In (4.5), the first term is the critically diffracted wave into the slow medium that was originated from the inci-
dent critical wave from the slow medium, 7, = | L m | is the average propagation time between the incident
point x(s,) and the diffracted point x(s), and (x (sq) & ,n'(&,)) are the points and critical angles at which the
surface waves are generated. The second term in (4.5) is the critically reflected wave by the incident critical
wave from the slow medium, where 1 — o (x(s)) is the reflection coefficient at critical angle, in this case part
of the waves at this point will become surface waves in the faster medium and diffract into other points, so
1 — o (x(s)) is derived by the fact that the reflection term is the difference between the incident wave and
the creeping wave generated from this point.

For notation simplicity, below we will use x to denote x(s) and x, to denote x(s,).
If & = 0 (case II), there will be some tangentially diffracted waves, so

5

s B <(2))dz sgn(n')oo
ft,x, &)= ocgz(x)/ ocg’z(xq)e j;q By, (x(e))e sgn(n/)/0 fo(t =14,%,,0,n,)dn, ds
+ (1= ap () (t,x, &), (4.7)

where 7, = | [0 | is the average time,

Sq C Z

ff(t7x7éan) - lll'BIJrf(t,X— wk,7£7’7/)'

In this case, the incident wave tangentially hits the interface from the slow side. Part of the incident wave
transforms into the creeping wave with coefficient acBDZ, and part of the incident wave travels through tangen-
tially with coefficient 1 — o .

4.2. The Type A interface

Next, we consider a Type A interface. For & > 0, it is still the following partial transmission and reflection
condition:

f(ta X+75,77]l) = aif(ta Xﬁaé;v”;) +Oiif(l‘, X+7_£lvn/)7 é; > 0 (48)
If ¢ < 0, there are three possibilities.

1. if T > 0 (partial reflection and transmission), then

f(ta X_a 5,717/) = OCI_{f(E X_7 _5/’ ’7,) + O(]—-f(t X+7 5277’;) (49)
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2. if T < 0 (complete reflection), the interface condition is
fx &) =1t x, =& n). (4.10)

3. if 7 = 0 (case II), there will be some diffractions, so the interface condition is

flxgon =) [ age B [t g ez a

Sh

D " b [ By (x))z | [roosenl)
+(1 —ocAl(X))/ %, (Xg)e T sgn(m,)/0 fo(t —Tg,xF, 0,0, )dy, ds,
+ (1=a2.00)f(ex7 =& ). (@.11)

In (4.11), the first term represents the critically diffracted wave into the slow medium that was originated from
the critical incident wave from the slow medium, the second term represents the critically transmitted wave
into the slow medium that was originated from the tangential incident wave from the fast medium, while
the third term represents the critically reflected wave into the slow medium that was originated from the crit-
ical incident wave from the slow medium.

For & = 0 (case I),
+00 sgn(rg)

.y : " B, (x(2))dz ,
Sux £ =R [ o e LB ) / Fo(t =Ty 0, ), ds

+ oc'j2 (x) / ocfz (x,)e w / A7 q, (é;))dé; ds. (4.12)
Sh

In (4.12), the first term represents the tangentially diffracted wave originated from the tangentially incident

wave from the fast medium, while the second term represents the tangentially diffractive wave originated from

the critically incident wave from the slow medium. When & = 0 the wave hits the interface tangentially from

the fast side of the interface and produces the tangentially diffracted waves with diffraction coefficient cxﬂ) and the

v

critically transmitted waves with transmission coefficient 1 — o? 4 - The velocities in I', satisfy (< )z(gq)2+

[(F) - 1}( ) =0.

After getting the interface condition in the local coordinates systems, we use k = (&,5) = Q0 'k’ =
0 7'(¢, 1) to get the interface condition in the original coordinate systems.

The case ¢~ > ¢* can be similarly considered, since in this case one just needs to interchange the Type A
with the Type B interfaces.

The interface condition (4.2)—(4.12) is the main idea in this paper, and will be used in constructing the
numerical flux across the interface in our paper.

5. The numerical scheme
5.1. The numerical flux

Consider the 2D Liouville equation

c(x, )& X )
+i fy—cr -fz—i—r]zfi—cy 524—7]2],,:0. (5.1
V&7 \/é +1p?
Without loss of generality, we employ a uniform mesh with grid points atx;,1, i =0,...,M in the x direction,
Viths J = 0,...,N in the y direction, 5k+_ k=0,...,K in the ¢ direction and Mgt [=0,...,L in the n direc-

tion. The cells are centered at (x;,y;, &, n;) with x; = 3 (x,,l +x,+l), Y, = y/,l + Y ) fk (ék,é + ék+%),
n =3 (17,,% + 171+5>. The mesh sizes are denoted by Ax =, — x,,%, Ay =y =y A= — &,
An = Mgt = M1 Let At be the time step, " = nAt. The cell average of fis defined as
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1 il /y,,-% /4}% U
ikl = X A A A X, ), 67 d dé d dx7 52
Sijwt AvAyAZA] /1 ). ! S, », & m)dndédy (5.2)

eh T
while f/k[ —ﬁ/k[(tn).

We approximate ¢(x, y) by a piecewise bilinear function, and always provide two interface values of ¢(x, y)
at each cell interface. Let the cell interface value of c(x,y) be ¢y, 5, = 3, [ ’*1‘//22 ¢(x1)p,»)dy, and ¢, , defined
similarly. When c¢(x, y) is smooth at a cell interface, the two interface Values are identical. We also define the
average wave speed in a cell by averaging the four cell interface values

c[j = Z(cit— 1 + cd—l +Cl]+ )

The 2D Liouville equation (5.1) can be semi-discretized as

cii€i cin
Axy/E + 2 Ay\[& +mi
Cirlj — CLJ Cijrl — C+
- ZAxTéz V& +n (ﬁf,k+§,1 - fz;,:,k—%,z) - W V& 1 (fzj/'k,l-#% - fzjjk,l—%) =0,
where the numerical fluxes f;;;,1, and fj; ;.1 are defined using the upwind discretization. The essential part of

our algorithm is to define the sphttlng numerical fluxes I + at each cell interface. We will use the
interface conditions (4.2)—(4.12) to construct these fluxes.

(fijwt), +

Lkl fz;+‘ kj

Assume c(x, y) is discontinuous at x;,1, and ¢ »; < ¢, ;- Consider the case &, > 0. The upwind scheme
yields /7, e = fiw and the interface condition (4.2) gives
f;’:%,jk[ - o{+f(t7xiayj7 51‘7 nt) + :xl}rf(taxl“rlaij frv nr)v (53)

where (&) =071 (& ), (&n,) = O (=&, 1), and & is obtained from using 1} = n/ in (3.1) with (&, 1) in
local coordinate systems. Then transform this interface condition into the original coordinate system (&, 7).
Since (&,,n,), (&,,n,) may not be grid points, we have to define them approximately. One can first locate the
cell centers that bound these velocities, and then use a bilinear interpolation to evaluate the needed numerical

flux at (¢;,n,) or (&, n,).
The case &, < 0 depends on the specific type of the interface, which we discuss below in details.

5.1.1. The Type B interface

First, gy = fir1jl by the upwind scheme. Let

2
1 ci_ J
g = (22 <ék> S 1 () (5.4)
C1+1/2] Cit)2,
We define the numerical flux according to the interface conditions (4.3)—(4.5).

1. If Tiv1/2,) > O then
f;+_/k/ o f(t xnijém”lr) +OC f(t xl+17yj76t71/’t) (55)

where (&) =0 (&, ), (&n) = O (=&, 1), and & is obtained from (3.1) by setting 1, = 7.
2. If 74412, < 0, then

«f;':r%,jkl :f(tvxiayja éranr)‘ (56)

3. If 7410, =0, then we discretize the arclength s of the interface with s,,¢ =0,1,...,0. Assume that

(x Xitd LY;) = (x (sp) ¥(s,)) and denote f(¢,x;,,; , ¢, n) by f(x(s,), &, n). By approximating (4.5) (we only write
the case of & >0, the case of & < 0 is 51m1far)
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P D i ﬁBl (x(sy))As K ~
S0 = ap (x(5,)) > o (x(sq))e /= Dt =14 x(s0), &y () ASAE
i q=0 m=0
+ (1 - (xBPl (X(SP)))f(t7xi7yja fra ”r) (57)
with 7, = j i, ﬁ%—f,) and ¢*(s;) = ¢ (x(sy),»(s;)). The critical angles (& ,1/(¢,)) in the local coordinate

2 IR
system satisfy (C AjD &) + [(; Ei:;) — 1} (7'(¢,))* = 0. Since " — 7, may not be a grid point in the time

m

direction, we have to define it approximately. One can first locate the two adjacent discrete time, and then
use a linear interpolation to evaluate the needed numerical density at time ¢ — ¢,. In practical computation,
we need to save the numerical flux at the interface for the previous time steps.

If & = 0 (case II, tangent incidence and diffraction), then according to (4.7),

p =" B, (x(sy)As L ~
Siigu () = ap (x(s,)) Y | o (X(s))e 7= D St =Ty x(sy), Eni o) | AsAn
q=0 c=0
+ (1 — %, (X(Sp)))f(t,xi,y,«, &) (5.8)

with & = 0.

5.1.2. The Type A interface
If & < 0 and for non-critical angles, the numerical flux S Lk is defined by (5.5). The difference lies in the case
when the wave hits the interface with the critical or tangent angle of incidence, namely, 7;;1/,,; = 0 or «fk =0.
For a critical angle, by approximating (4.11), we obtain (for the case of ' > 0),

P 3 Bt A K B
Fripu(0) = o0 (x(s,)) D | o (x(sy))e 7= D (=T X(54), & (&) JASAE
q=0 m=0
P 72/@1 (x(sy))As L
+ (1= ol (x(5,)) Y o (x(sg))e 7= D St =14,x(s,), &, 1) AsAn
q=0 c=0
(1= o (x(5p)) ) £ (31,3, E011,) (5.9)

N2 N2
with critical angles (&,,#'(£)) satisfying (%iq’;) (&) + {(;Eiji) - 1} (&)’ =0, and & =0 are the
velocities of the waves in the local coordinate, which hit the interface tangentially from the fast side of the

interface and produces the tangentially diffracted waves and critically transmitted waves.
If & = 0 (case I, tangent incidence and diffraction), using interface condition (4.12), we have

P —Z/;Al NAs L
,i%‘,-kl(t)ﬂuDI(X(sp))Z oy (x(s,))e 7 D (e = 1y X(sy), &, ne)AsAn

q=0 c=0

v Y s K
+ o (x(s,)) Y | (x(s))e 7= DS =1y, X(sy), & n(En)ASAE | (5.10)

q=0 m=0
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with & =0 and (,,7'(&,)) satisfy (2—1)2(5;)2 + {(Z{)z — 1} (7'(¢)))* = 0, where the waves hit the interface
from the slow media with a critical incident angle and produces the critically transmitted wave along the fast
side of the interface, which sheds diffracted waves at every point they passes by.

In the case & >0and ¢, > ¢, 120 Jit12,u can be similarly defined for diffraction.
ct

In practical computations, we compute the critical angle by solvingi—: =4 (c—,)2 — 1 at the interface. Since
we cannot get ¢’ = 0 numerically, we use the condition |¢'| < g, with the constant ¢ sufficiently small (say
about the mesh size) as the numerical zero, as the condition for tangent angle. In our experiments, when

o < 1073, the choice of ¢ does not affect the numerical results.

5.2. Approximation along the curved interface

Before discussing the detailed algorithm, let us show how to calculate the quantity along the curved inter-
face. Suppose we have an interface given by a curve C, defined by the equation

Fint(x,y) = 0.
We classify the grid points into the following categories (see Fig. 2), as done in [21]:

1. Sweep along the horizontal direction for each j and flag the points adjacent to the interface from the right
and the left. These points are called horizontal irregular points and labeled with ‘H’.

2. Sweep along the vertical direction for each i and flag the points which are adjacent to the interface from the
top and the bottom. These points are called vertical irregular points and labeled with “V’.

3. All the other points are regular points.

After we determine the irregular points, the cell interface between two horizontally adjacent irregu-
lar points and also two vertically adjacent irregular points can be seen as an approximation to the real
interface curve C. By doing this, we can still assign our averaged wave speed as what we introduce in Section
4.1.

Connecting these two points by a dashed line as in the figure and it must have an intersection with the inter-
face, say P.

The exponential decaying term is evaluated by the following method. The decay factor between the point P
and O is defined by exp{—f. (S)r,0} with S'is the point of intersection of mesh line along y;,, , and the inter-

face, and rpp = \/ (xp —x0)" + (¥p — yo) is the distance between P, O. Similarly, 7, between P and O is defined
by rpo/ct(S), here ¢*(S) is the wave speed at point S. The decay rate between the point P and R is defined by
exp{—p_(S)rro — f(B)ror} and the time 7, is rpo/ct(S) + ror/c™ (B).

After getting the coefficients, decay rates and corresponding velocities, we can calculate the splitting numer-
ical fluxes f7,, ;; and f;%,, », by the algorithm in this section. Here effectively we moved P to the nearest
mesh point, resulting an O(Ax, Ay) error. The above techniques can be applied for any interface curve as long
as there is an explicit expression for it.

The detailed algorithm to generate the numerical flux at ¢+ = ¢" is given in the Appendix.

In order to capture the effect of the diffractions, only near the interface the mesh size must be the same order
of the diffracted coefficients (in the numerical examples given in this paper, this means Ax, AyA¢, Anp ~ O(e%)).
This means that the computational cost will be more than the Hamiltonian preserving scheme in [26] that cap-
tures only transmissions and reflections.

5.3. Positivity of the numerical scheme

Now we consider the finite difference approach. For simplicity, we only consider the forward Euler scheme
in time. Without loss of generality, we consider the case &, < 0,7, > 0 and Ciay = citl.j for all 4, it S ijfl
for all j and the point x,,1,y; is on the Type B interface. - ” o o

First, for non-critical angles, the scheme is same as the scheme in [26].
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For critical angles, the scheme reads:

f;/;l - z]kl CU Ve - Z bV e n ng+1
7'=iq q q
Az Ax o, - E € AyM(dl gt T 2 zq,/,,,km,l,,,)

D n "n n n n
+(1 - “Bl,f) (bl ik T DS g 03+ ba i,f,k1+1,/|) —Ji

CiiY; (Ci+%j —c 1j)

ijri n n i = n

- Ay ( ijkl ijfl,kl) + AXAE : \V fk + ’71( k41,0 ijkl)
¥

N (cum—<i)

AvAn ﬁk + n/(fljkl ljkl 1)
where d| +d, = 1,b; + by + b3 + by = 1 are nonnegative numbers.
Namely,

e — Cit — €l

" it3.] i—3.j 2 Lty ij—

ij]:;l = |1 =yl — Ci/”liyi - sztc &+ — A—yz% \V ék +1; Tk

- _at
Cirdj ~ Cicly

Ax )tc ék + it i1,
- Z B, — )\ Ax2+Ay2

7= g ng+1
+ ey oy, - § :O‘Bl ¢ (dl- ook T 4235 b ) BVAL
q,m
at D n n
+ cith/“x(l - O‘Blf) (bl i1 T byf;! i1 T b3f7l,j,k|,l| + b4fi,j,k]+1,11>
_ At
ci.j+% C[‘ji%

+ Cif)";yif;";fl,kl + A—y% fk + 17 -1 (5.11)

t_ A _At C_ M gt _ A
where A, AX,Ay s A57;'1 A

Now we 1nvest1gate the positivity of scheme (5.11). This is to prove that if /7, > 0 for all (i, j, k, I), then this
is also true for f73; 71 Clearly one just needs to show that all the coefficients before /" are non-negative. A suf-
ficient condition for this is clearly

+
i+5,J Cz ¢ J13 Cl/ 3

+
Cirdj —Ci1; il T 6t /

j.t

or
C-1-—C+ C--1—C+
Ciy,  CiiV; it~ Gl Lty Vil 2
Atmax | S0 G 2 /e <1 512
T A Ty T T A T Ay St S (-12)
Gl 76 il ¢ . 1
3 ik Sy ij-d

The quantity e and Iy now represent the wave speed gradients at their smooth points, which
have a finite upper bound if we assume ¢(x) € W">. The scheme is positive when a hyperbolic type time step
constraint (5.12) is satisfied.
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6. Numerical examples

In this section we present numerical examples to demonstrate the validity of our scheme and to show the
numerical accuracy. In the numerical computations the second order Runge-Kutta time discretization is used.

Since it is difficult to get the exact solution for this problem, we use the numerical solution with the mesh
size small enough to represent the exact solution. The immersed interface method for the acoustic wave
equations with discontinuous coefficients constructed by Zhang and LeVeque [45] based on the two-dimen-
sional Lax-Wendroff method with space mesh size / = 5; and At = &/2 are used to solve the system (1.1) in
the form

%—Vs—O
L& _divr=0

e(x)? at

with s = & r = Vu to get the energy density distribution
E(x,1) = % o s +5 Lo (6.1)
The numerical energy density is defined as
y=1- 12 syl 4 4 e 62)
where

1 /xm/z /)m/z )dxd
i = s s(x,y)dxdy
’ AXAy Xi-1/2 1/2

and r; can be defined similarly.

The discrete wave equation is quite dispersive [11], so one needs many grid points per wavelength to com-
pute it. The mesh size 7 = €/20 is the biggest mesh size we can get satisfactory numerical results for the discrete
wave equation.

The limit energy density is the zeroth moment of the density distribution of Liouville equation

€0 (x.y.1) //fxy,én, dydé.

We use the super computer at the Tsinghua National Laboratory for Information Science and Technology,
which has 512 Itanium 2 64 bit processor. Its peak computational speed is 2.662 x 10'*, the total EMS
memory is 1024G, and the storage space is 26T.

Since a spherical wave can hit the interface at any incident angle and the diffraction of a spherical wave is
much larger than a plane wave, in following numerical examples, we will choose some spherical waves as the
initial data.

We also need to approximate the delta function initial data of the Liouville equation. We use the product of
a discrete delta function in 1D [15]:

SA=15D, 15l<1
So(x) = (6.3)
>

(0]

with @ = A& = Ay to regularize the initial data (6.1). (For more recent numerical studies on the approxima-
tions of the delta function, see [41,44].)
Then the energy density distribution are recovered by

EY =" fiuAéAn. (6.4)
ki

We use the L'-error in the cumulative distribution function (cdf), i.e., the antiderivative of energy density [19]
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/+oo /+oo
which can be expected to flatten as e is decreased, to measure the weak convergence in the semi-classical limit.
Lemma 2.1 in [4] ensures that (6.5) going to zero is equivalent to the weak convergence of £ (x,,1)

Below we denote our scheme by GTD, and the method in [26] by GO. The numerical error comes from the
following two parts:

y
/ (E0(s,2,1) — E(s,2,))dsdz|dxdy, (6.5)

I. The model error: Geometric Theory of Diffraction gives O(e!/?) correction to the zeroth order approx-
imation of the wave equation—the Liouville equation. So the model error between GTD + Liouville
equation is O(e). In addition, there is also error near caustics introduced by the geometrical optics limit
which cannot be rescued even with the GTD addition. Our approach improved the error of GO near the
interface, but not near caustics.

I1. The discrete error of the numerical approximation of the Liouville equation is O(\/B) due to the pres-
ence of discontinuity in f.

The total error is therefore max (e, v/Ax). This means that the errors between the GTD and wave equation,
for fixed €, cannot go to 0 once the mesh size is smaller than O(e*/?).

For related model errors, we also refer to a careful numerical study of the error between a high frequency
wave in random media and its weakly-coupling limit—a radiative transfer equation [2].

Example 6.1. First, we consider the wave equation in 2D with a Type B interface:

Mfc( )2Au =

o
u(0) = deei™ 20%) 300(x-+0.3)" - 3007 (6.6)

(2 ?) 2_ 2
%(0) — 4 5E-300(r+0.3)2-300y

with

( ) {27 Finl(xvy) > 07
clx =
Y 4, Finlx,y) <O0.

The interface curve C is given by

fint(xvy) = (X— 1)2 +y2 -1
The corresponding Liouville equation is

clx,»)¢ c(x,y)n

VE+n VE A+

with initial data

fit ===t =Sy — e[ &+ P fi — e\ E + P fy =0 (6.7)

1
£(0,%,v) = 8[0.16(x 4 )? + ——— | e W96 52 _ 0 4x)5(y — 0.4y).
c(x,)
The computational domain is chosen to be [x,y, &, 1] € [ 1, 1] x [-1,1] x [-1,1] x [-1, 1]. The physically rele-
vant values for the reflection, transmission coefficient «f, o] are given by (3.4), and the attenuation constant Bs,
D

and diffraction coeflicient oy are given by (3.15) and (3.16), respectively. The time step is chosen as Az = Ax

Fig. 4 shows the contour of numerical energy densities £ = 0.05and £ = 0.05at¢ = 0.1,0.4 fore = 1/4000
At t = 0.1, there are only reflected and transmitted waves when waves cross the interface. At t = 0.4, the crit-
ically diffracted waves are generated on the interface, and penetrate into the shadow zone of GO—the zone
which the waves in GO cannot arrive. The wavefront of GTD is very close to the solution of the wave equation,
which shows that GTD can capture the main feature of the diffraction waves, but GO cannot.
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Fig. 4. Example 6.1, contour of energy density £ and £ at ¢t = 0.1 (top) and 0.4 (bottom). Left: & middle: £ by GTD:; right: £ by GO.

Fig. 5 depicts the cross-section of numerical energy densities of £ and £ for y =0 and y = 0.6 at ¢ = 0.2,
respectively. One can see that, in the shadow zone (near x = —0.2, y = 0.6), the GO solution deviates from the
solution of the wave equation more than the GTD solution.

Table 1 presents the numerical errors of the numerical energy density £ computed with different meshes in
the phase space at t = 0.1,0.2 and 0.4 with ¢ = 1/4000. The error of GTD is about half of the error of GO
when the mesh size is small, and the GTD approximates better for smaller meshes. This is because the diffrac-
tion phenomena cannot be captured efficiently unless the mesh size is small enough near the interface. The
convergence rate is about first order.

Table 2 shows the error of the numerical energy density £ in the shadow zone (—0.20 <x < 0.1,

l[y] > 0.6). The GTD solution is a good approximation to the solution wave equation in the shadow zone.
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Fig. 5. Example 6.1, the cross-sections of energy density with e = 1/4000 at ¢ = 0.2. left, y = 0; right, y = 0.6. The solid lines are &, ‘o’ are

9 for GTD, and ‘-’ are £¥ for GO.
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Table 1
Errors of £ of Example 6.1 for € = 1/4000 on different meshes
Mesh 100 x 1007 200% x 2007 400% x 4007

GTD GO GTD GO GTD GO
t=0.1 1.0231e-2 1.7023e—-2 4.1475¢-3 7.9532¢—3 2.0332e—-3 4.9058¢—3
t=02 1.3264e—-2 2.2044e-2 5.0341e—3 9.8034e—3 3.0134e-3 6.7352¢—3
t=04 2.1341e-2 3.0108e—2 6.6193¢—3 1.2945¢-2 4.2324e-3 8.0192e—3
Table 2
Errors of £ of Example 6.1 for e = 1/4000 in the shadow zone
Mesh 100% x 100% (%) 200% x 200% (%) 4007 x 400% (%)
t=0.1 9 5.1 2.8
t=02 13 7.6 4.1
t=04 17.6 10.2 6.1

Table 3 presents the errors of the numerical energy density £ computed with different meshes in phase
space at + =0.1,0.2 and 0.4 with ¢ = 1/100. The wavefronts and cross-section are similar to the case of
e = 1/4000. From the numerical results, one can see that GTD is has smaller error than GO. The accuracy
is not good as in the case e = 1/4000. This is not surprising since the Liouville equation is the limit of the
energy density of wave equation as ¢ — 0. The Liouville equation is much closer to the original problem when
e = 1/4000 than when € = 1/100. Here the main error—the model error which is the difference between the
Liouville equation and the wave equation—contributes to the overall errors in Table 3.

Table 4 shows the errors of the GTD solution with e = 1/100 in the shadow zone.

Table 5 presents the errors of the numerical energy density £ computed with different meshes in the phase
space at £ = 0.1,0.2 and 0.4 with ¢ = 1/10,000. Because the contours and cross-section are similar to the case

Table 3
Errors of £ of Example 6.1 for e = 1/100 on different meshes
Mesh 100 x 1007 200% x 2007 400% x 400?

GTD GO GTD GO GTD GO
t=0.1 4.2025¢—-2 5.3112e—2 2.3106e—2 2.7034e—2 9.8915¢—-3 1.3633e—-2
t=02 5.3026e—2 5.8054e—2 2.6074e—-2 3.1348e—-2 1.3015e—2 1.6026e—2
t=04 6.7254e—2 7.4029¢—2 3.4068e—2 3.7892e—2 1.6864e—2 1.9891e—-2
Table 4
Errors of £ of Example 6.1 for ¢ = 1/100 in the shadow zones
Mesh 100% x 100% (%) 200% x 200% (%) 400% x 400% (%)
t=0.1 16 10 7.9
t=02 19.1 14.6 12.9
t=04 24 18.9 16.4
Table 5
Errors of £ of Example 6.1 for e = 1/10,000 on different meshes
Mesh 100% x 1007 2007 x 200 400 x 400

GTD GO GTD GO GTD GO
t=0.1 1.0028e—2 1.5625e—-2 3.8054¢—3 7.7034e-3 1.3962e—-3 3.8368¢—3
t=02 1.4144e-2 1.7846e—2 4.5656e—3 7.9795¢—3 1.7084e—3 4.2396e—3

t=04 1.9052e—-2 2.5542e—-2 6.8032e—3 1.0345¢-2 2.4145¢-3 5.8347e—3
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of e = 1/4000, we omit it. It shows that GTD has smaller errors than GO, but the error of the two method is of
the same order. This is partly due to the fact that in this example, the wavelength is very small, so the Liouville
equation is a good approximation to the wave equation. From the Geometric Theory of Diffraction, when the
wavelength is very small, the diffracted wave, which is of O(e!/?) compared to the incident wave, becomes very
weak and decays very fast, and eventually vanishes when ¢ — 0. As we mention before, we only improve the
errors at the interface, and do not improve the errors for the caustics. So there is no big difference between
GTD and GO in terms of errors to the wave equation. The convergence rate is of first order.

Table 6 is the errors of GTD solutions for ¢ = 1/10,000 in the shadow region.

The solution of GTD and GO depend on wavelength . Fig. 6 gives the relation between the error of GTD
and GO and the wavelength at ¢ = 0.2. One can see that the error of solution of GO is near O(¢'/?), and the
error of GTD is near O(e*?) when ¢ is small enough. This is because the diffracted waves decay exponentially,
and away from the interface the diffracted waves are very small. Another reason for the error is O(¢*3), not
O(e) is that the discrete error of the numerical approximation of the Liouville equation is of O(Ax), which is
larger than the model error.

Example 6.2. Consider the wave equation in 2D with a Type B interface:

%27? — c(x,y)2Au =0,

u(0) = Beel 120005027202 (68)

(202 2 2
%(O) — el s——200(x+0.2)*~200y

with e = 1/3000, and

C(X y) _ 2(1 _x)27 fint(xvy) >0,
’ 3x+1)%  Finlx,y) <O0.

The interface curve C is given by

]:int(x7y> = (X— 2)2 +y2 —4.

Table 6
Errors of £ of Example 6.1 for e = 1/10,000 in the shadow zones
Mesh 1007 x 100% (%) 2007 x 200% (%) 4007 x 400% (%)
t=0.1 6 4 2.1
t=02 9.2 6.4 3.6
t=04 15 10 5.6
-35 - -
—6— GTD
4
4.5
-5 F
w
8
-55
-6 I
-6.5
-7

-9 -8.5 -8 -7.5 -7 —6.5 -6 -55 -5 -4.5

Fig. 6. Relation between log,E and log,e, E is the errors.
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The corresponding Liouville equation is (6.7) with initial data

400002 ~400% 52 0 4x) (i — 0.4x).

£(0,x,v) = 32[0.16(x + y)* + 5
c(x,y)
The computational domain is chosen to be [x,y, &, 5] € [—1,1] x [-1,1] x [-1,1] x [-1, 1]. The physically rel-
evant values for the reflection, transmission coefficient o}, o] are given by (3.4), and the attenuation constant
Bg, 1s given by (3.15), B, is given by (3.17), the diffraction coefficient oc};] is given by (3.16), and oc}é’2 is given by
(3.18). The time step is chosen as Ar = § Ax.

Fig. 7 shows the contour of numerical energy densities £% = 0.05 and € = 0.05 at ¢ = 0.15,0.4. At time
0.15, there are only incident, reflected and transmitted waves. At time 0.4, there are critically diffracted waves
and tangentially diffracted waves near the interface. The critically diffracted wave arrives firstly at the shadow
zone because it travels along the surface of the fast medium, and the tangentially diffracted wave travels along
the surface of the slow medium for a Type B interface.

Fig. 8 depicts the cross-section of the numerical energy densities of £ and £ for y =0 and y = 0.6 at
t = 0.25, respectively. In the shadow zone (near x = 0, y = 0.6) GTD matches the solution of the wave equa-
tion much better than the GO.

Table 7 presents the errors of the numerical energy density £° computed with different meshes in phase
space at t = 0.1,0.25 and 0.5.

Table 8 is the errors of the GTD solution in the shadow zones (|x| < 0.2, |y| = 0.6). The GTD solution is a
good approximation to the solution wave equation in the shadow zones.

Example 6.3. Consider the 2D wave equation with a Type A interface:

% — c(x,y)zAu =0,

u(0) = 4 Eei’(zz’27200(x+0.1)27200)»2 : (6.9)

-\‘2+y2 2 2
& (0) = 4et ~200(x+0.1)%~200y
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Fig. 7. Example 6.2, contour of energy density £ and £ at ¢ = 0.15 (top) and 0.4 (bottom). Left: £; middle: £ by GTD; right: £© by GO.
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Fig. 8. Example 6.2, cross-section of energy density at = 0.25. left, y = 0; right, y = 0.6. The solid lines are &, ‘o’ are £ for GTD, and

‘> are £9 for GO.

Table 7
Errors of £ of Example 6.2 for ¢ = 1/3000 on different meshes
Mesh 100% x 1002 200 x 200> 400> x 4007

GTD GO GTD GO GTD
t=0.1 1.3362¢—2 2.0347e—2 4.9452¢—3 9.4134e—3 2.4549e—3 5.4152e—3
t=0.25 1.8864e—2 3.0707e—2 6.1103e—3 1.2215¢—2 3.0446e—3 6.7035¢—3
=05 2.5709e—2 4.1229¢—2 9.4044e—3 1.6084e—2 4.8087e—3 9.8704e—3
Table 8
Errors of £ of Example 6.2 for e = 1/3000 in the shadow zones
Mesh 100% x 100% (%) 200% x 200% (%) 400% x 400% (%)
t=0.1 11.1 7.2 4.1
=025 153 10.4 5.3
t=05 20 14.5 7.6

with € = 1/2500 and

20— 1) +2(y - 1),
2(x +2)° +2(y - 1)°,
The interface curve C is given by

Fin(x,y) = (x +2.8)* +)* — 8.84.

in ) 07
clr.y) = Fnlr) <
Fint(x,»

int( ) > 0

The corresponding Liouville equation is (6.7) with initial data

£(0,%,v) = 8]0.16(x + )’ L

40000 4002 5 (= XN 50 Yy
) (£33

2 2

In this example, the wave speed ¢(x) depends on x and y. The computational domain is chosen to be
[x,y,&,n] € [-0.4,0.4] x [-0.4,0.4] x [-0.4,0.4] x [—0.4,0.4]. The physically relevant values for the reflection,
transmission coefficient of, o] are given by (3.4), and the attenuation constant f8 4, 1s given by (3.6), B,, B4, 18
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given by (3.11), the diffraction coefficient o? 0> cx?z and oclA? are given by (3.7), (3.13) and (3.14), respectively. The
time step is chosen as At = le

Fig. 9 shows the contour of numerical energy densities £? = 0.05 and £ = 0.05 at 7 = 0.15,0.25. At time
0.15, there is no diffracted wave at the interface. But at time 0.25, there are diffracted waves at both sides of the
interface because there will be critically diffracted wave in the slow medium and tangentially diffracted wave in
the fast medium for a Type A interface.

Fig. 10 depicts the cross-section of numerical energy densities of £ and £ for y=0and y=0.32 at
t = 0.25, respectively. In the shadow zone (near x = 0.04,y = 0.32) GTD matches the solution of the wave
equation much better than the GO.
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Fig. 9. Example 6.3, contour of energy density € and £ at r = 0.1 (top) and 0.25 (bottom). Left: &; middle: £” by GTD; right: £ by GO.

091 -1 09 1
08 - 08 —
071 -1 07 1
06 -1 06 1
= o5k -
1 04 1

0 N | DO | c0aQ0 0
-04-036-0.32-0.28-0.24-0.20-0.16-0.12-0.08-0.04 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.4 -04 O -0.
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Table 9
Errors of £ of Example 6.3 on different meshes
Mesh 100% x 100? 200% x 200? 400% x 4007

GTD GO GTD GO GTD GO
t=0.1 1.4311e-2 2.4474e—2 7.2045¢—3 1.1748e—2 3.5697e—3 6.8014e—3
t=0.15 1.8303e—2 3.1422e-2 8.2147¢—3 1.4894e—2 4.0181e—3 7.8085¢e—3
t=0.25 2.7733e—2 4.0163e—2 9.0408¢e—3 1.8844e—2 4.5164¢—3 9.8143¢—-3
Table 10
Relative /' error of £ for Example 6.3 in the shadow zones
Mesh 1007 x 100% (%) 2007 x 200% (%) 4007 x 400% (%)
t=0.1 11.2 8 4.8
t=0.15 15.4 11.5 6.2
t=0.25 20.8 15.4 8.9

Table 9 shows the errors of the numerical energy density £ computed with different meshes in phase space
at t = 0.1,0.15 and 0.25. The convergence rate of GTD is of first order.
Table 10 presents the errors of the numerical energy density £ in the shadow region (|x| < 0.12, |y| > 0.3).

Remark 1. The typical wave length of visible lights is 400-700 nm, or in the order of 10~® m. To simulate such
a high frequency wave in a domain of 1 m requires at least 0(106) mesh points per spatial dimension. It means
0O(10°) meshes in one space dimension, O(10'?) meshes in two space dimension and O(10'®) meshes in three
dimension. This is simply impossible for today’s computational equipments. On the other hand, by using the
Liouville equation, although the dimension is doubled, even to resolve the diffraction which is of
O(e'?) = 0(1072), one needs O(10%) meshes in two space dimension (four dimension in the phase space)
and 0(1012) meshes in three space dimension (six dimension in the phase space). This is a tremendous saving
compared to the full simulation based on the original wave equation. Moreover, since the diffraction
phenomenon needs to be captured only near the interface, one could use much coarser (O(1)) meshes away
from the interfaces which will result in a much more significant saving. Thus double the dimension using the
Liouville equation provides a much more efficient approach to high frequency waves when the frequency is
very high.

7. Conclusion

In this paper, we extend the previous Liouville equation based numerical method in [26] for the simulation
of high frequency waves through curved interfaces. The new contribution is to build into the numerical flux
the diffraction terms derived from Geometric Theory of Diffraction. Our scheme can effectively compute the
diffraction phenomena through curved interfaces, which are generated by the surface waves in addition to par-
tial transmissions and reflections. Numerical experiments show indeed that the diffraction can be captured
without resolving the full wavelength of the original wave equation.

In the future we will extend this scheme to other types of interfaces and edges. Another project is to develop
an adaptive mesh method that combines a finer mesh near the interface to capture diffraction with a coarser
mesh away from the interface, which will reduce the computation cost greatly.
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sets of critical angles for ¢, ; <c,,; (C7)and ¢/, ,; <ciy)p; (C"), respectively, and T = {k | & = 0},
the sets of tangentially incident angle. Then the interface is described parametrically in terms of arclength s
in the form

x=x(s), y=yls)

For point (x;,y;) = (x(s,), ¥(s,)), the radius of curvature a(s,) is given by

Appendix. The detailed algorithm

Firstly, find C* = {(i,j,k7 l)

a}, for o sufficiently small, as the

1
a(Sp) = a(xi+l/27yj) - |X’(Sp)y,/(5p) —x”(sp)y’(sp)| .

=
One can approximate x'(s),x”(s) or evaluate them exactly. N. = Sy

The rotation matrix Q(s,) = Q(xi;1/2,;) is given by

oo = (20 ),

X(sp)  V(sp)
o if i;{ >0,
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Civ1/2,

+ o 2
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&=V, n=u,(En) =0 (s,)(E ).

&if &y <& < &y for some K, ny <, <y for some 7', & < & < &,y for some ky, and i, <1, <
11,41 for some /i,
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+ AlfAn I St jh+1,041 + 1A£A1117+1 Sirtjh+1a |-
& end .
#if ¢y, > ¢y, for a Type A interface, |¢°| < o (case II, critical diffraction), 7, = -7, Yo,
< t,=1"—1, <" for some n,, Iy = Zj” Y fszAy and ' <ty =1"—1, <" for some n,,
q

E=Vir=0, n=1n, (Emn) =0"(s)0,1)"
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(or evaluated exactly if possible),
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Z/ /rﬁAl VAy +Ax?
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# end
if & = 0 (tangent diffraction),
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3 a1 2B 1/a+ pf;
5A1+ \é_‘IO(2€+) 1/3<;+/ﬁ> - fatp;

l./ Y
\/N? —1
~1/3 +

n1/2(6+)é(p; + 1/a> 1
2 AT PV 1]

with r; the smallest positive number r satisfying
n? . 1 13
A 236+ (p” —> r+ qoe§n = 2361 (pj}’ + ;>

and
)2/3 1/a+p;
\/1-N?

b ® sl I\ N, » g
0= 3 o 0)

with r; the smallest positive number r satisfying
Jp

_2 2 % i
€.’r e "
=D Bay s/ A2 +AR

’i%x/kl?*' (") = oc27+(ij) Z OC/II)1,+ (iqvjq)e Sy
q,m

tnq+l —t t — tha
q n q ng+1
X AyAi{ (T j(iqil,jq«,km,lmi,* + At ‘/[iqilJ411kl)ts/m1*

/p
B Z ﬂsz*(s/)\/m
+op, (i) Z o (g jg)e

< ¢ < &y for some K, ny <, <y, for some I’

oy (if) =

r2

V3 /1
ﬁAz— 2 —-90(2N_¢€) 3 (54‘1)

ij

Al

1 3
3 1\
= —; e <p,j + —) NN — 1),

ql’m/
n,+1 n,
" A Av Lt = e
At iy Jgl» et L At ’q’a/q’akm’alm/ ’
=D B VA 24+Ax2 - 51)v/ A2 +Ax2
where (iy, jo ks L) € C™, ki €T, e E’”AZ ’ > o,and e Ef’fﬁA”( ) ’ = 0.
& for a Type B interface, if ¢, ,; > Cm/z, (case II),
V3 1 s 23 G+ 1/a
B =Lt + 1 - L
+

\/1-N2

b (2me\! (1= N*)"|AT (") | Ai(goe?)]
OCBz4+(U) - ( rij ) [(1 _Ni)% _Ni(l —I—NZ) }Al( ) <6€+> Al (qo)




6136 S. Jin, D. Yin/Journal of Computational Physics 227 (2008) 6106-6139

with r; the smallest positive number r satisfying
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’L,q/fAz_xs/)\/Ayquz ST By 5V A2

where (iq,jq,k,, 1,)eC ,ky €T, e*E/ > g, ande ~ > o

& end , ) e , /ARiAr

& if iy < 0;1/2,1., for a Type B interface, |[t7| < ¢ (case I, critical diffraction), 7, = z;f’:jq GO
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® clse
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+ ZiAn l Sijktn1 + klAéAlrlH Sijki+1,0,
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& end

The fluxes f + , can be constructed similarly.

Remark 2. In cons1der1ng diffraction one needs density distribution in several previous time steps. In the first
few time steps, we simply omit this term until the first time when diffraction occurs.
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